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Macromolecules undergo a variety of physicochemical 
changes of state in both solution and the solid state. A 
considerable amount of effort has gone into the theo- 
retical description of monomacromolecular transitions, 
e.g., dilute-solution changes of state. The linear 
macromolecule has been considered equivalent to a 
one-dimensional crystal. 

In turn, a one-dimensional, two-state Ising modell has 
been used to describe transitions in the crystal. B. H. 
Zimm2 and S. Lifson3 have laid much of the groundwork 
for deriving equations based upon the king model 
which are applicable to isolated macromolecules. 
Transitions within this framework are cooperative 
processes. That is, a very small change in an external 
variable such as temperature, pressure, or solvent 
composition can lead to a large change in the physi- 
cochemical state of the macromolecule. Applequist4 has 
given an excellent description of cooperative macro- 
molecular processes, while Poland and Scheraga5 have 
collected many of the important papers, both theo- 
retical and experimental, dealing with macromolecular 
transitions. 

Relatively little theoretical work has been done to 
treat macromolecular transitions in the solid state. 
Yenni and McCullogh have modeled the orthorhom- 
bic-to-monoclinic phase transition of polyethylene using 
molecular energy calculations.6 Statistical-mechanical 
treatments of the glass t r a n ~ i t i o n , ~ - ~  Le., the onset of 
liquid-like rubbery state, have been reported for 
amorphous polymers. Some computer-based simulation 
studies of chain-molecular assemblieslO have also been 
performed, but these almost complete the catalog of 
serious solid-state theoretical efforts. 

Crystalline polymers exhibit both crystal-crystal and 
crystal-melt transitions. For example, polytetra- 
fluoroethylene undergoes, upon heating, two crystalline 
rearrangements before melting,ll and hence three 
transitions are observed. The crystal-melt transition 
for highly crystalline and structurally simple polymers, 
like highly linear polyethylene, appears to be a true 
first-order phase transition. 

The purpose of this Account is to report some 
progress we have made in developing an equilibrium 
formalism to describe crystal-melt polymer transitions. 
More recently we have begun to study crystal-crystal 
transitions in polymeric materials and report some 
preliminary findings. We have focused upon developing 
a theory which has the capacity to yield first-order 
phase transitions. 

The philosophy adopted is a generalization of the 
ideas of mean-field theory and involves the replacement 
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of the complicated and unknown interaction between 
neighboring chains by an averaged interaction de- 
pendent only on the properties of a single chain. The 
free energy, expressed as a function of some average 
property of a chain, is then minimized to yield a 
first-order phase transition in a natural way. The 
theory as presented contains no adjustable parameters. 
Model and Formalism 

Basic Theory. The model12 we chose to represent 
a crystal composed of linear macromolecules is shown 
in a schematic two-dimensional representation in Figure 
1. The chains are assumed to be infinite in length. For 
the moment let us concentrate on the Hamiltonian for 
the “soft” variables of the crystal, by which we mean 
those variables such as torsional rotations about single 
bonds that are capable of large excursions from their 
equilibrium values. The Hamiltonian is taken to be the 
sum of the kinetic energy of translation, 7, of the in- 
dividual monomeric units and the potential energy of 
interaction, V. The potential energy V can be divided 
into an intramolecular component, VI, dependent only 
upon the torsional angles 6 of rotation about the 
backbone of the monomers and an intermolecular 
component, V2, which depends upon the translational 
coordinates of the monomer units as well as the angles 
8. The intrachain energy per monomer unit can be 
expressed as 

(1) 

where U(6,O’) is the intrachain potential energy of 
nearest-neighbor pairs of torsional angles. The quantity 
n(6,B’)dedO’ is the fraction of the total number of 
consecutive segments of the chain in which a torsional 
angle lying between 6 and 6 + d6 is immediately pre- 
ceded by one lying between 6’ and 6‘ + de‘, as shown 
in Figure 2A. 

Vl = S S U(6,6’)n(6,O’)dOd6’ 

We also define the angular density 

n(6) = Sn(6,B’)dB’ (2) 

Sn(6)dB = 1 (3) 

and note that 
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Figure 1. A two-dimensional representation of adjacent polymer 
chains. The spheres represent monomer units and the lines 
connecting spheres correspond to the covalent bonds between 
monomers in the same chain. Reprinted with permission from 
ref 12. Copyright 1977, American Institute of Physics. 

A 

B 

Figure 2. (A) Pentameric segment of a polymer chain used to 
calculate the intrachain potential V(0,B’). Both 0 and 0’ vary 
between 0 and 2a so that both nearest and second-nearest 
neighbor interactions are considered. The spheres correspond 
to monomer units. Reprinted with permission from ref 12. 
Copyright 1977, American Institute of Physics. (B) Tetrameric 
chain segments of two adjacent polymer chains used to compute 
interchain potential energy as a function of B and 0’ as well as 
the relative translational and rotational degrees of freedom of one 
segment with respect to the other. 

The interchain potential is much more difficult to 
specify. In addition to depending upon 0 from multiple 
chains, V2 depends also upon the interchain transla- 
tional coordinates. We have circumvented these di- 
mensional complexities by choosing a generalized 
mean-field model for V z  by writing 

where the functional W is of the form ,. 

Because W, is a constant and W,  merely acts to modify 
the intrachain potential, the first term capable of 

leading to a phase transition in the expansion is the 
second-order term W2(0,0’). Enhanced attenuation of 
interchain correlations may be expected to occur as a 
consequence of chain misalignments at  elevated tem- 
peratures; this has been modeled in terms of third-, 
fourth-, and sixth-order expansions formed by suc- 
cessive convolution of W2(0,0’) with n(0) and n(0’). 
These rapidly varying terms containing products of 
three, four, or six n’s yield sharper phase transitions. 

A principal omission of the present model is the 
kinetic energy of rotation of the monomeric units. A 
partial justification of this approach is that the requisite 
motions are inhibited by the strong mutual steric re- 
pulsions of the constituent atoms. The validity of this 
approach has been supported by Go and Scheraga.I3 In 
total, the Hamiltonian per monomer unit for our model 
is 

H = s ~U(0,0’)n(O,O’)dOd0’ + W[n(0)] (6) 

The Helmholtz energy F’ of this model is found to be 
given by the relation 

F’ = P-l In A, + sh(O)n(Y)dO + W[n(0)]  (7) 

where 0-l = ksT, the temperature expressed in energy 
units, and A, is the largest eigenvalue of the integral 
eigenvalue equation 

(8) 

The function h(0) is a fictitious “applied field” intro- 
duced as a computational device and given by 

6A/6h = @nX 

Minimization of F’ with respect to  n(s) yields the re- 
lation 

h(0) = -6W[n(O)]/6n(O) (9) 
The addition relation 

allows an iterative approach to be taken. An initial 
guess at  n(0) leads to a better approximation through 
application of eq 9, 8, and 10 in turn. 

Calculation of Molecular Energetics. A fixed- 
valence-geometry molecular-mechanics method has 
been used to calculate both intra- and interchain po- 
tential energies.l4.I5 In this approximation the energy 
is assumed to be the sum of pairwise atomic interactions 
involving dispersion attraction, steric repulsion, and 
electrostatic terms. An “intrinsic” torsional potential 
for bond rotations is also included in intrachain cal- 
culations. 

Usage of the calculated potential energies in the 
statistical mechanical formalism involves a critical step. 
One must assume that the effective potential energies 
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Figure 3. (A) Isoenergy contour map of the intrachain potential 
energy for P M  based upon the structure shown in Figure 2A. 
Energies are in kcal/mol with the global energy minimum of the 
all-trans conformer state defined as zero. Reprinted with per- 
mission from ref 17. Copyright 1975, American Institute of 
Physics. (B) Isoenergy contour map of the interchain potential 
energy of two adjacent P M  chain segments based upon the 
structures shown in Figure 2B. Energies are based upon the scale 
of (A). 

calculated from molecular mechanics are independent 
of temperature. The applicability of our theory for 
modeling thermal phase transitions depends upon the 
reasonableness of this assumption. We are not the first 
to use calculated conformational potential energies to 
estimate macromolecular features. Flory has suc- 
cessfully used this approach to predict chain statistical 
properties at  constant temperature.16 We are, however, 
first to set aside a constant temperature constraint. 

Application to Polymethylene, (CH,),. The theory 
has been used to model the crystal-melt transition of 
single crystals of polymethylene (PM). PM exists as 
a planar zig-zag of methylene units (an all-trans 
structure) in the crystalline conformation. The linear 

(16) See P. J. Flory, “Statistical Mechanics of Chain Molecules”, 
Wiley-Interscience, New York, 1969. 

TEMPERATURE (’K) 
Figure 4. Fraction of PM trans conformers, n(O), vs. temperature 
for (a) single chain; (b) single chain + second-order term; (c) single 
chain + third-order term; (d) single chain + fourth-order term. 
The prime (’) letter curves correspond to the gauche plus gauche’ 
populations, (n(l20’) + n(240’)). T,(exp) - 415 K. Only models 
c and d yield a true first-order phase transition. Reprinted with 
permission from ref 19. Copyright 1973, American Institute of 
Physics. 

chains normally pack into an orthorhombic lattice. 
The intrachain potential energies have been calcu- 

lated using a pentameric chain segment (see Figure 2A) 
of PM which includes second-nearest-neighbor inter- 
a c t i o n ~ . ~ ~  The resultant isoenergy contour map is 
shown in Figure 3A. The interchain energies, and 
corresponding chain separation distances, can be es- 
timated using two tetrameric chain segments (see 
Figure 2B) of PM. Each segment is fixed in a con- 
formational state. The potential energy for each pair 
of intermolecular conformer states, i.e., trans-trans, 
trans-gauche, etc., is computed under the constraint 
that the vectors defining the chain axes of the all-trans 
conformers in each tetrameric unit are held parallel for 
all packing states. One tetrameric unit is fixed in space. 
The other tetramer rotates about the fixed one. The 
mobile tetrameric unit is also allowed to translate and 
rotate with respect to its all-trans chain axis in the 
search for the minimum interchain potential energy. 
The interchain packing potential energy map is shown 
in Figure 3B; the angles 8 and 8’ belong to different 
chains as defined in Figure 2B. A set of chain sepa- 
ration distances and corresponding potential energies 
was recorded for each pair of B and 9’ for use in the 
volume expansion and phonon calculations discussed 
below. 

In the numerical computation, integrals over angle 
B are replaced by discrete sums, and the coarseness of 
the grid used in this approximation has a marked effect 
on the accuracy of the results. The most drastic ap- 
proach considers only three values of the torsional angle, 
trans, gauche, and gauche’, and may be considered as 
a variant of the Ising model. After addition of some 
corrections18 to allow for the shape of the potential wells 
this approach yields the results shown in Figure 4. In 
curve a the interchain mean field is absent, while in 
curve b it is approximated by a second-order term, 
bilinear in the distributions n(8). In curves c and d 

(17) F. P. Boyle, P. L. Taylor, A. J. Hopfinger, and R. Simha, J.  Appl .  

(18) F. P. Boyle, P. L. Taylor, A. J. Hopfinger, and R. Simha, Mac- 
Phys., 46, 4218 .(1975). 

romolecules, 9, 599 (1976). 
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a1 T,, K AS, cal/(mol.K) 
0.00 470.5 2.25 
0.10 470.8 2.08 
0.25 471.4 1.80 
0.50 473.3 1.22 
1.00 U a 

a No transition. 

third-order and fourth-order interchain potentials are 
used, respectively. These higher order terms provide 
an ad hoc inclusion of the effects of chain misalignment. 
In this case only the third- and fourth-order terms yield 
phase transitions. 

From the calculated free energies one may also obtain 
the heat capacity and, when a transition occurs, the 
entropy of melting, AS. The value of A S  predicted by 
the fourth-order model is in the vicinity of 2 call 
(mo1.K); this quantity and the heat capacity a t  
neighboring temperatures are in qualitative agreement 
with e ~ p e r i m e n t . ~ ~ ~ ~ ~  

These initial calculations, in which the drastic ap- 
proximation was made of replacing the continuous 
range of torsional angles by only the three values 0, 
2x13, and 4x13, served to show that a first-order phase 
transition a t  a realistic temperature could be obtained 
from the formalism. This modest success justified a 
more careful calculation in which the integration over 
the range of 2 i ~  of the torsional angle was replaced by 
a sum over m uniformly spaced values, with m equal 
to 6, 12, and 24 as well as the original value, 3. These 
approximations are referred to as m-state models.12 The 
results of these calculations for various m are shown in 
Figure 5 for PM. In this case the interchain interaction 
was represented by a sixth-order mean field in the sense 

(19) V. Bares and B. Wunderlich, J .  Polym. Sci., A - 2 ,  11,397 (1973). 
(20) B. Wunderlich, J .  Phys. Chem., 69, 2078 (1965). 

Table I1 
Calculated Crystal-Melt Transition Properties for PM 

as a Function of m 
m 3 6 1 2  24 exptlI9 
T ,  5 6 1  542 470 466 415 
A S  1.07 1 .36  2.22 2.00 2.32 

b. C= for an Isolated Chain of Infinite Length 
m 3  6 1 2  24 exptlI6 

c.  Cm for a Chain in the Crystal as a Function of 

a. Variation in T ,  ( K )  and A S  (cal mol-'  K- ' )  

Ccz 8.13 8 .05  5.30 5.46 6.6-6.8 

TemDerature Using the m = 1 2  Amroximation 

temp,  K C- temp, K C= 
w 0 470 75.1 

100 1.49 x 104 ... ... 
200 802 471  6.40 
300 312 500 5.63 
400 1 5 3  600 4.39 

d .  T ,  (IC) and AS (cal mol-'  K-I)  for Phonon Models 
Based upon the m = 1 2  Approximation 

witllout with phonons 
phonons K = 90.6a K = 181 exptl19 

Tm 470 425 437 415 
A S  2.22 2.72 2.52 2.32 

e. Zero-Temperature Orthorhombic Unit Cell u and b 
Dimensions Predicted and Extrapolated from 

Experimental Dataz3 
~ ~~ 

lattice dimension, A 
k = 90.6 k = 181 exptl 

U 7.69 7.69 7.12 
b 4.48 4.47 4.88 

-___ 

a K given in kcal A - *  mol-' 

of eq 5; that is, the interchain potential was taken to 
be a convolution of a function containing the product 
of six factors of the distribution n(0) of torsional angles. 
Interestingly, as can be seen in Table I, the form of the 
thermal dispersion of the interchain potential for an m 
= 12 model has a pronounced effect on heat capacity, 
but only a minimal contribution to the location of T,. 

Transition temperatures and entropies of melting are 
listed in Table IIa for the various m-state models. The 
m = 3 and m = 6 approximations do a relatively poor 
job in the estimation of T,. However, both m = 12 and 
24 yield reasonably accurate melt transition temper- 
atures which, in turn, differ only slightly from one 
another. The complexity of the computational pro- 
cedure limits the usage to the twelve-state model. The 
comparison of A S  in Table IIa for the different ap- 
proximations indicates that none are quite adequate. 
On the other hand, both m = 12 and m = 24 yield 
relatively consistent results, and so disagreement with 
the experimental A S  value may be a consequence of 
degrees of freedom omitted from our original Hamil- 
tonian rather than any lack of precision in its solution. 

We have tested how sensitive the model is to in- 
clusion of the actual lowest energy state and corre- 
sponding distinct energy grid set. Instead of using 
energy values centered on the trans state, energy values 
were used which correspond to a uniform displacement 
from this reference state. A 5% change in 8 and 8' for 
the lowest energy values yielded less than a 5% change 
for both T ,  and AS.  

The nearest-neighbor distribution is also found when 
solving for the angular distribution of torsional angles 
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Jl 
Figure 6. Histograms of the angular distribution n(0) vs. B for 
P M  using the m = 12 approximation. The solid line is for just 
below the T,  while the dotted line is for just above T,. Note 
the loss of trans population and increase in number of gauche 
and gauche’ states immediately upon passing T,. Reprinted with 
permission from ref 12. Copyright 1977, American Institute of 
Physics. 

of the system. This information can be used to de- 
termine the characteristic ratio,16 C,, of the individual 
chains. This quantity is defined by the relation 

C, = 1 + 2a/l  

where 1 is the bond length and where a, the persistence 
length, is given by the sum over bonds in a single chain 

m 

a = ~ ( l L 4 ) / ~ l L ~  
2=2 

The quantity C, is a measure of how the change in the 
population of rotamer states, in this case as a function 
of temperature, modifies the statistical spatial features 
of a chain molecule. Table IIb contains the C, for an 
infinite, isolated, PM chain as a function of m and T 
as well as an experimental value of C, under t9 con- 
ditions (distant-neighbor intrachain excluded volume 
effects are canceled by polymer-solvent interactions).16 
The reasonably good agreement between theory, for m 
= 12  and 24, and experiment is added evidence in 
support of the general model. 

Table IIc contains values of C, for a series of tem- 
peratures below and above T, using the m = 12 ap- 
proximation for a crystalline PM chain. Significant 
changes occur in C, for the crystalline phase prior to 
melting. The magnitude of the drop in C, near T,  is 
not in the observed range. This suggests that the 
predicted trans population falls off too rapidly im- 
mediately prior to melting. Variation in C, with 
temperature above T ,  is not as large as is the case 
below T,. The magnitudes of C, above T, suggest that 
the individual polymer chains behave, in the melt, like 
an isolated chain under 0 conditions. The large change 
in C, between 470 and 471 K corresponds to passage 
through T,. Figure 6 depicts the major redistribution 
of conformer states that occurs a t  melting and which 
leads to the dramatic change in C, for the m = 12 
approximation. 

Contribution from Phonon Anharmonicity 
Formalism. The formalism embodied in eq 2 

through 10 reasonably estimates some physicochemical 
features of PM. However, the prediction of the percent 
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TEMPERATURE ( “ K )  
Figure 7. The thermal expansion of crystalline P M  according 
to (a) theory neglecting phonons, (b) phonons included with K 
= 181, (c) phonons included with K = 90.6, (d) experiment. Taken 
in part from ref 21. 

of volume increase as a function of temperature for PM, 
as shown in Figure 7, is poor. We felt that the neglect 
of vibrational contributions to lattice breakdown might 
explain why our calculated volume expansions are so 
much less than those observed experimentally. Hence 
we attempted to include the effects of phonon an- 
harmonicity in a self-consistent fashion within the 
existing formalism21 That is to say, we considered the 
effects of the non-Hookean nature of the forces in 
modifying the normal modes of vibration of the system. 

In the quasiharmonic approximation the phonon free 
energy is of the form22 

with wqs being the frequency of the phonon with 
wavenumber q and polarization s. The sum over the 
wavenumbers is determined by the number and spacing 
of the individual monomer units. There are three 
polarizations of the waves since the polymers are in a 
three-dimensional space. The frequencies oqs are 
themselves functionals of n(t9) since the restoring forces 
acting on a displaced monomer depend on the distri- 
bution of torsional angles. The total free energy of the 
crystal or melt now reads 

F = p1 In h, + Sh(B)n(B)dB + W[n(0)] + F,[n(0)1 
(12) 

Minimization of F with respect to n(0) now yields 

since the phonon contribution appears as an extra term 
in the mean-field energy. An iterative solution of eq 
13, 8, and 10 is the appropriate procedure to obtain a 
self-consistent solution. 

The approach followed in this calculation is first to 
determine the pair potential between a monomer and 
its nearest neighbor. The potential is then expanded 
to second order in small displacements in real space and 
subsequently transformed to wavenumber space from 

(21) F. P. Boyle, P. L. Taylor, and A J. Hopfinger, J .  Chern. Phys., 68, 

(22) C. Kittel, “Thermal Physics”, Wiley-Interscience, New York, 1969. 
4730 (1978). 
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which the normal modes of the system are then de- 
termined. The frequencies and polarizations are thus 
found. 

The pair potentials are found by considering each of 
the monomer units as a separate symmetric entity in 
a three dimensional space. Each entity lies along 
straight lines representing chains as shown in Figure 
1. A monomer unit interacts with its nearest neighbor 
along the chain via a harmonic force. This potential 
representation is consistent with the treatment of hard 
variables in normal coordinate analysis. The in- 
verse-power law is assumed to hold for interchain in- 
teractions, and hence the potential-energy function for 
the remaining two dimensions perpendicular to the 
chain axis can be written in the general form 
V(r,B,0') = Vo + [ a / ( r  - R0)'] - [O/ ( r  - R,,)Q] (14) 

where a ,  0, V,, Ro, P,  and Q are all functions of 0 and 
0' of adjacent interchain segments. Numerical values 
of the requisite parameters of eq 14 for 0 and 0' are 
empirically determined by curve fitting against the 
interchain potential energies found in the molecular 
mechanics calculations. 

Results for PM. Table IId lists the computed T,  
and A S  for PM using the m = 12, sixth-order mean-field 
expansion model. Column one contains the results 
when phonons are neglected. Column four includes 
experimental findings. Columns two and three contain 
the results when phonons are included using two dif- 
ferent intrachain force constants, K.  The reason for 
considering two different values of K is the uncertainity 
in the weighting of in- and out-of-plane (of the trans 
conformation) force constants to obtain K as well as an 
innate uncertainity in assigning these individual force 
constants. The choices of K represent opposite ex- 
tremes in possible values. I t  is clear that inclusion of 
phonons in the calculation, irrespective of the choice 
of K ,  improves the agreement of predicted and observed 
T,. The entropy change becomes larger when phonons 
are included in the model. However, as indicated in 
Table IIa, this increase could be counteracted as more 
than 1 2  states are included. 

Table IIe compares the T = 0 K lattice dimensions 
for the two values of K with experimental values23 
extrapolated to T = 0 K. The theory finds an a di- 
mension that is too large and a b dimension that is too 
small. This error is believed to be a consequence of the 
combined inability of an adjacent-chain-segment mo- 
lecular mechanics calculation and mean-field interchain 
representation to describe the necessary packing an- 
isotropy of a chain perpendicular to its axis. 

The thermal expansion predicted by theory is 
compared in Figure 7 to the empirical curve of Davis, 
Eby, and C o u l ~ o n ~ ~  for the case where fold length of the 
single crystal is set equal to infinity. The theoretical 
curves are the increase of the product of the a and b 
dimensions. The c dimension is fixed by the assumed 
harmonic nature of the potential in that direction. 
Inclusion of phonons brings the predicted volume in- 
creases closer to the experimental extrapolation, 

(23) G. T. Davis, R. K. Eby, and J. P. Coulson, J .  Appl. Phqs., 41,4316 
(1970). 

However, the phonon-dependent theory predicts a 
thermal expansion that is only 3&40% of that observed 
experimentally. The theoretical expansion is isotropic, 
while the actual expansion is not. The discrepancy 
could possibly be attributed to poor extrapolation of 
what might already be a large error in the potential-well 
shapes and/or innate anisotropy of the chains and their 
packing. 

Concluding Remarks 
The simple models adopted in the formalism to 

describe polymer melt transition behavior have definite 
limitations. These limitations are made more stringent 
when the quantitative application of the formalism 
depends upon the geometric and energetic terms de- 
termined from molecular mechanics calculations. I t  is 
difficult to estimate the range of error in molecular 
mechanics calculations. Geometric parameters can 
probably be determined more accurately than energetic 
parameters as a consequence of the manner in which 
the method is parameterized. Overall, a 10% error limit 
is probably inherent to molecular mechanics calcula- 
tions. 

Nevertheless, the partitioned manner in which 
contributing transition mechanisms are included in the 
formalism, coupled with the capability of making at  
least semiquantitative assignments to requisite tran- 
sition terms, lends a meaningful utility to our model. 
For a given polymeric system we are able to evaluate 
the relative importance of the various contributions 
(intrachain, interchain, phonons, etc.) to transition 
behavior. In such a way it is possible to gain insight 
into the structure-thermodynamic interrelationship 
responsible for the properties of a polymer crystal. In 
this regard we have also applied the formalism pres- 
ented here to describe the crystal-melt transition12 of 
polytetrafluoroethylene [ (CFzCFz),]. The accuracy of 
the predicted results to observed findings is about as 
good as achieved for PM. 

Currently, the theory is being applied to describe both 
crystal-crystal (phase I-phase 11) and crystal-melt 
transitions of poly(viny1idene fluoride), (CFzCH2),. In 
order to model the stress-induced phase I1 to phase I 
transition, the formalism has been modified by adding 
to the free energy a stress-length term acting in the 
chain-axis direction. Several metastable phases emerge 
from this calculation. Four of these can be identified 
with the melt and the three known crystalline phases, 
but an additional phase, not yet observed, has also been 
found in a preliminary search. 

Lastly, we have had some initial success in combining 
the transition formalism with a model of solitary-wave 
propagation24 to describe the poling process in phase-I 
PVFp which is necessary for inducing piezoelectric 
properties in this material. 
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